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Acidification suppresses the natural capacity
of soil microbiome to fight pathogenic
Fusarium infections

Xiaogang Li 1,2,10, Dele Chen3,4,10, Víctor J. Carrión5,6,7, Daniel Revillini 8,
Shan Yin4, Yuanhua Dong3, Taolin Zhang3, Xingxiang Wang3,9 &
Manuel Delgado-Baquerizo 8

Soil-borne pathogens pose a major threat to food production worldwide,
particularly under global change and with growing populations. Yet, we still
knowvery little about how the soilmicrobiome regulates the abundanceof soil
pathogens and their impact on plant health. Here we combined field surveys
with experiments to investigate the relationships of soil properties and the
structure and function of the soil microbiome with contrasting plant health
outcomes.Wefind that soil acidification largely impactsbacterial communities
and reduces the capacity of soils to combat fungal pathogens. In vitro assays
with microbiomes from acidified soils further highlight a declined ability to
suppress Fusarium, a globally important plant pathogen. Similarly, when we
inoculate healthy plants with an acidified soil microbiome, we show a greatly
reduced capacity to prevent pathogen invasion. Finally, metagenome
sequencing of the soil microbiome and untargeted metabolomics reveals a
down regulation of genes associated with the synthesis of sulfur compounds
and reduction of key traits related to sulfur metabolism in acidic soils. Our
findings suggest that changes in the soilmicrobiome anddisruption of specific
microbial processes induced by soil acidification can play a critical role for
plant health.

Soil microbiomes play crucial roles in regulating plant growth and
health1. Soil-borne pathogens that induce host disease have become a
critical factor negatively affecting yields in agriculture globally. These
pathogens are projected to increase under climate change and thus
represent a major challenge to promote food production for a

continuously growing global human population2, 3. Globally dis-
tributed soil-borne pathogens, such as Fusarium can gravely impact
the roots of plants4. The soil microbiome has been shown to reduce
plant pathogen efficacy and represents a biological barrier against
infection5. Indigenousmicrobes can suppress the growth of aggressive
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pathogens through mechanisms, such as nutrient competition or
substance antagonism6,7. Disease-suppressive soils can also lead to
reduced pathogen susceptibility for the next generation of plants,
known as the ‘soil-borne legacy’8,9. Soil legacies help plants tolerate
changing climates, extending beyond their influence on pathogens
alone10. Despite all this, the environmental factors regulating the
capacity of healthy soils to suppress pathogendevelopment is virtually
unknown. Edaphic properties largely impacting the soil microbiome,
such as acidification could help explain the inherent disease-
suppressive capacities of healthy soils11. However, experiments sup-
porting this hypothesis are lacking.

Long-term evolution and cooperation among taxa in soil have
produced robust naturalmicrobial communities able to endure a wide
and complex set of external pressures, includingpathogen invasion12,13.
Various microbial biocontrol agents isolated from soil can prevent
pathogenesis through parasitism, predation or interference, and they
have developed intricate biochemical signaling to reduce the patho-
genicity of soil-borne pathogens14,15. Unfortunately, low colonization
rates and limited functional expression of beneficial microorganism
inoculations in soil have led to indeterminate microbiome-mediated
pathogen prevention in the field16. For this reason, identifying complex
microbial community interactions may be the best way to understand
their capacity to inhibit pathogens12,17. The complementary effect of
diverse communities in resource utilization and the synergistic effect
of antagonistic substances reveal a community advantage for the
suppression of soil-borne pathogens6,7,18. However, few studies have
been carried out to evaluate the effect of natural microbial commu-
nities on the growth, abundance or efficacy of soil-borne pathogens.
Disturbance of the soil environment can directly affect microbial
community structure and functioning via regulating niche
differentiation19–21. We posit that soil degradation impacts on the soil
microbiome can have critical consequences for plant health by
‘opening the door’ to important soil-borne pathogen infections22,23. To
fully address this hypothesis, a complex set of experimental systems
that directly observe and test the role of microbiome mediation in
plant health-pathogen relationships was required.

Here, we combined field surveys with multiple experiments to
investigate the structure and function of the soil microbiome asso-
ciated with contrasting crop health using peanuts (Arachis hypogaea)
as amodel plant (Fig. 1).We explicitly investigatedwhat environmental
conditions in soil support disease-suppressive capacities. Moreover,
we employed shotgun metagenomic sequencing and untargeted
metabolomics across a range of soil acidification levels to explore
microbial functional capacity to reduce pathogenicity and promote
plant health by analyzing the enrichment of important microbial
functional pathways and identifying specific soil microbiome meta-
bolites. Our work has overarching implications for land management,
sustainable agriculture, and food production for growing populations
as we progress through the Anthropocene.

Results
Soil acidification aggravates plant health
Our study included a wide variation in key soil properties such as soil
textures, soil nutrients, soil organic matter and pH: 19–46% clay and
6–52% sand, 0.48–1.26% organic carbon content, and pH 4.1 to 6.8.
Other soil properties varied as well (Supplementary Fig. 4, Supple-
mentary Fig. 5). To analyze the correlation between soil properties and
plant health, Spearman correlations were performed. We observed
that among all tested properties, soil pHwas positively correlatedwith
plant height, while ammonium content revealed an opposite trend
(P < 0.001). Notably, pH was the sole factor significantly correlated to
plant height (R =0.33, P <0.001, R2 = 0.11), root length (R =0.45,
P <0.001, R2 = 0.20) and root rot (R = −0.51, P <0.001, R2 = 0.26)
(Fig. 2a). We then conducted a stepwise regression model to further
quantify the contribution of multiple environmental factors to peanut

root rot (Fig. 2b). In this analysis, we selected 16 soil properties as
explanatory variables, but only five of these soil properties were
selected in the final model, explaining 36.1% of the variation in plant
disease (F-statistic: 21.24 on 5 and 174 degrees of freedom, P <0.001).
Consistentwith previous analyses, pHwas themost significant variable
explaining peanut root rot (t value = −7.39, P <0.001). The other vari-
ables selected by the model mainly included soil nutrient indicators,
e.g., the content of soil nitrate, available potassium, total nitrogen, and
total phosphorus. Soil pH revealed a significantly negative effect on
disease severity (Fig. 2a, b, P < 0.001). Taken together, our results
suggest that acid soils trend toward lower plant health andgreater host
plant disease.

Soil bacterial rather than fungal communities exhibit soil acid-
ification shifts
We obtained 1,193,050 and 2,604,284 high-quality reads for 16 S and
ITS, respectively. After discarding non-bacterial and fungal operational
taxonomic units (OTUs), we obtained 11,551 bacterial and 4590 fungal
OTUs. 99.5% of the bacterial sequences could be assigned to 24 bac-
terial phyla, mainly, including Actinobacteria, Acidobacteria, Proteo-
bacteria, Firmicutes, Chloroflexi, Gemmatimonadetes and
Planctomycetes; and 96.3% of the fungal sequences could be assigned
to 10 fungal phyla, mainly, including Ascomycota, Basidiomycota and
Rozellomycota (Supplementary Fig. 2). In total, 501 bacterial and 352
fungal genera belonging to the above-mentioned phyla were recorded
from these samples, respectively.

We first analyzed correlations between each soil property and the
overall composition of bacterial and fungal communities usingMantel
test analyses (Supplementary Table 6). We found that soil bacterial
communities were largely associated with soil pH (Mantel test,
R2 = 0.42, P <0.001), SOC (Mantel test, R2 = 0.34, P < 0.001), and soil
texture (Mantel test, R2 = 0.27, P < 0.001). However, we found no sig-
nificant correlations between these soil properties and fungal com-
munity composition (P > 0.05). Further, NMDS ordinations based on
Bray-Curtis distances confirmed that bacterial communities of soil
samples belonging to acidic soils (pH 4.0–5.0) clustered in distinct
groups, and of samples associated with higher pH (6.0–7.0) displayed
the microbial community structural along the first principal coordi-
nate (NMDS1) (Fig. 2c, Stress = 0.079). However, soil fungal commu-
nities across soil pH ranges did not show distinctive communities,
though samples belonging to higher pH (6.0–7.0)were distinguishable
along NMDS1 (Fig. 2d, Stress = 0.093). Our results suggest that bac-
terial communities are far more influenced by changes in pH than
fungal communities (Supplementary Fig. 7).

We further investigated the relationship between soil pH and
microbial abundance using fluorogenic quantitative PCR. Through
comparative analyses across soil samples of four pH ranges (4.0–4.5,
4.5–5.0, 5.0–6.0, 6.0–7.0), we found that soil bacterial abundances
significantly increased with soil pH (Fig. 2e, R =0.70, P <0.001,
R2 = 0.49). However, we did not find any correlation between soil
fungal abundances and pH (Fig. 2f, R = −0.03, P > 0.05, R2 = 0.001). The
lowest bacterial copy numbers were detected in soil samples with low
pH (4.0–4.5), ranging from 7.8 × 107 to 5.74 × 108 copies/g soil, fol-
lowed by soil pH with 4.5–5.0, ranging from 1.43 × 108 to 4.07 × 109

copies/g soil. Furthermore, α-diversity (Shannon index, Fig. 2g) and
richness (Chao1 index, Supplementary Fig. 8a) of soil bacteria sig-
nificantly decreased with increased soil acidity (P <0.01); by contrast,
levels of α-diversity and richness of fungi remained largely unchanged
across different pH categories (Fig. 2h, Supplementary
Fig. 8b, P > 0.05).

Changes in the relative abundance of bacterial and fungal taxa
under soil acidification
Phylum-level relative abundance plots revealed that two abundant
(>1.5%) bacterial phyla (Chloroflexi and Planctomycetes) significantly
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increased with acidification (Duncan’s multiple comparison test,
P <0.05), whereas three taxa (Proteobacteria, Acidobacteria and
Gemmatimonadetes) were significantly reduced as pH decreased
(Fig. 3a, Duncan’s multiple comparison test, P < 0.05). For phyla
detected as significant across multiple tests (Supplementary Table 7),
the direction of the response (increase or decrease in relative abun-
dance with soil pH) was always consistent (Supplementary Fig. 7).
Highly abundant classes, Planctomycetacia, Ktedonobacteria and

Chloroflexia were significantly enriched under soil acidification (from
0.8%, 10.9%, 2.4% at pH 6.0–7.0 to 2.2%, 36.7%, 3.9% at pH 4.0–4.5,
respectively) (Supplementary Fig. 9, Spearman correlation, P <0.05).
For fungal phyla, Ascomycota dominated the soil fungal communities
with abundances of 77.2%–99.3% across all samples (Supplementary
Fig. 2), but the responses of the remaining fungal phyla to soil acid-
ification had no consistent patterns across the four acidification cate-
gories (Fig. 3b, Spearman correlation, P > 0.05). Taken together, soil
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Fig. 1 | An overview of the experimental workflow for this study. a Field inves-
tigation and sampling. Three quadrats of 2m × 2m were selected randomly for
sampling in each field. Plant disease severity was determined, and soil cores
homogenized and transported to the lab for DNA extraction and soil physico-
chemical analysis. b Cultivation experiment. Fungal mycelium of the pathogen
Fusarium sp. was exposed to soil microbial volatiles. Pathogen mycelium and
spores were co-cultured with bacterial communities on agar and in suspensions to
reveal the suppressive effect of bacterial communities on pathogen growth and
reproduction. c Microbiome transplantation experiment. The bacterial suspen-
sions obtained from soil samples were inoculated in sterilized vermiculite for

growth of peanut seedlings. Sterile deionizedwaterwas used in controls. After 30d
of spore suspension incubation, the protective role of bacterial communities
towards pathogen invasion was recorded according to disease incidence.
d Functional annotation. Metagenomic sequencing of 12 soil communities at pH of
4.0–4.5, 4.5–5.0, and 5.0–6.0 was conducted to disclose the functional profiles of
the soil microbiome. eMetabolite identification. Volatile compounds produced by
soil microbial communities were collected using glass Petri-dishes with ‘chimney’
lids, and identified by GC-MS for determination of volatile compounds with a
potential role in pathogen suppression.
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bacterial composition, rather than fungal, showed greater sensitivity
to soil acidification.

To further identify bacterial families associated with soil pH, we
performed a heatmap analysis at the family-level derived from the
significant responses of abundant phyla to soil acidification across all
samples. Of the 110 families belonging to the sensitive phyla, 80
showed strong correlation with soil acidification (Spearman

correlation, P < 0.05), and a phylogenetic tree was constructed to
depict dominant (present in over 25%fields)microbial taxa that exhibit
significant responses to soil acidification. The tree indicated a non-
random phylogenetic distribution of microbial taxa in response
(Fig. 3c). Of the top 30 most abundant families, Ktedonobacteraceae
and JG30-KF-AS9 within Chloroflexi, Isosphaeraceae and Gemmata-
ceae in Planctomycetes exhibited the highest overall preference for
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soil acidification (Fig. 3d). However, the majority of the dominant
family taxa within Proteobacteria exhibited significant negative asso-
ciationswith soil acidification (Fig. 3d, Spearmancorrelation, P <0.05).

Coherence of soil acidification response across taxonomic ranks
to root rot
To assess the relationships between microbial composition and the
observed plant diseases, we used spearman correlation analyses
between significant microbial parameters with soil pH and plant dis-
ease indices. We observed that, among all the bacterial and fungal
phyla, Chloroflexi was positively correlated with plant disease severity
(Fig. 4a, Spearman, R = 0.43, P =0.001, R2 = 0.18), yet Proteobacteria
(e.g., Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria)
and Gemmatimonadetes were negatively correlated with plant disease
severity (Fig. 4a, P <0.05). Soil bacterial diversity (Chao1 and Shannon)
was also negatively correlated with disease severity (Supplementary
Fig. 10, P < 0.05). We used random forest modelling to further identify
the main microbial predictors of plant disease severity (Fig. 4b).
Consistently, the results indicated that the top five individual pre-
dictors were, in order of importance: Gemmatimonadetes with 12.5%,
Alphaproteobacteria 9.9%, Chloroflexi 9.7%, Betaproteobacteria 8.2%,
andDeltaproteobacteria 7.9%. No contributionofmost abundant fungi
to explain plant disease was observed (Fig. 4b, Supplementary
Table 6).

Combining the results of correlation analysis and random forest
modelling, 246 genera (Supplementary data 1) distributed in five
bacterial taxa: Gemmatimonadetes, Alphaproteobacteria, Chloro-
flexi, Deltaproteobacteria, and Betaproteobacteria were identified
across all soil samples. We then used co-occurrence networks to
identify the correlation among these microbial taxa and their asso-
ciations with peanut root rot. Of the 246 genera, more than 90%were
clustered into three ecological modules strongly co-occurring with
each other (Modules #1, #2, and #3; Supplementary Fig. 11). Within
the three network modules, 13 genera in Alphaproteobacteria, 2
genera in Betaproteobacteria, 2 genera in Deltaproteobacteria, 2
genera in Gemmatimonadetes, and 4 genera (listed in Supplementary
Table 8, respectively) in Chloroflexi were identified as negatively
correlated with plant disease severity (P < 0.05), whereas 1 genus
(Acidicaldus) in Alphaproteobacteria and 2 genera (Ktedonobacter-
aceae and 1921-3) in Chloroflexi were identified as positively corre-
lated with plant disease severity (Supplementary Fig. 11,
Supplementary Table 9, P < 0.05). Across 26 genera, 78.8% exhibited
strong positive correlations (Supplementary Fig. 11, Supplementary
Table 10, P < 0.01).

Bacterial associated disease suppression and plant root pro-
tection in vitro
We further performed several in-vitro experiments (Fig. 1b) to examine
the effects of soil bacterialmetabolites (obtained fromall soil samples)
on peanut root-rot (i.e., caused by the pathogen Fusarium sp.).
Microbial metabolites (volatiles) and bacterial inocula obtained from
acidic soils (4.0–4.5) had a weaker suppressive effect on Fusarium sp.
mycelial elongation (Fig. 5a–d) and spore germination than those

obtained from high pH soils (6.0–7.0), with suppression ability drop-
ping by 20.6%–50.7% (Fig. 5e, f). Notably, the suppressive effects
increased with increasing soil pH.

Further microscopic examination revealed the pathogenic spore
germination morphology when mixed with bacterial inocula. The
bacterial community from relatively high pH level of soil samples
(5.0–6.0, 6.0–7.0) suppressed the conidium and chlamydospore ger-
mination, and inhibited germ tube elongation (Fig. 5e), reducing the
germination rate by 43.9% and 50.7%, respectively, as compared with
the acidic soils (4.0–4.5) (Fig. 5f). We further found a strong and sig-
nificantly positive correlation between the relative abundance of
ecological module #3 and the suppressive capacity of pathogen
growth, irrespective of the mycelial elongation (R =0.60, P <0.001,
R2 = 0.36) and the spore germination (R = 0.48,P < 0.001,R2 = 0.23), yet
no significant correlation was detected between the relative abun-
dance of module #1, #2, and such suppressive effect (Supplementary
Fig. 12, P > 0.05).

We finally examined differences in protection of peanut seedling
roots against pathogen infection by different soil bacterial inocula-
tions (Figs. 1c, 5g). All bacterial inoculations from soil samples reduced
Fusarium pathogen invasion. Interestingly, bacterial inoculations from
acidic soils (4.0–5.0) owned a significantly weaker protection of root
health, compared with relatively higher pH soils (6.0–7.0) (Fig. 5h,
Wilcoxon rank-sum test, P < 0.001). Overall, the suppressive ability of
bacterial communities decreased with increasing soil acidification.

Functional capacity of the soil microbiome and identification of
sulfur metabolism components
We elucidated mechanistic responses of the soil microbiome asso-
ciated with soil acidification performing shotgun metagenomic
sequencing of 12 soil communities at pH of 4.0–4.5, 4.5–5.0 and
5.0–6.0 (Fig. 1d). More than 97% of the sequences were high-quality
after screening and filtering (Supplementary Table 11). From those
sequencing reads, a non-redundant gene catalog was obtained com-
prising 1,668,824 genes, of which we identified 915 enriched genes
(DEGs) in soils of pH4.5–5.0, and 1074DEGs in 5.0–6.0.Wedetermined
the functional differences in soils with pH 4.5–5.0, pH 5.0–6.0 as
compared to soils of pH 4.0–4.5, and discovered a total of 58 and
28 significantly (Wilcoxon rank-sum test, P <0.05) enriched KO func-
tional categories (pathways) in pH 4.5–5.0 and pH 5.0–6.0,
respectively.

To further explore the pathways in which all differential KO
functional categories were affected by soil acidification, 17 KO func-
tional categories were retained for KEGG pathway enrichment.
Through this filter, it was notable that ko00920, the sulfurmetabolism
pathway was identified to play an important role in fungal pathogen
suppression by the microbiome, as it was enriched in all soils of rela-
tively higher pH (Fig. 6a, Wilcoxon rank-sum test, P <0.001). Con-
comitantly, effector genes and enzymes, including soxA, B, C, X, Z, Y,
fccB, dmdA, cysP and APA1, were significantly increased in relative
abundances in themicrobiome of all soils with higher pH compared to
that of lower pH (Fig. 6b, two-sided t-test, P < 0.05). These genes and
enzymes participate in the synthesis of sulfur compounds, such as

Fig. 2 | Relationshipbetweenplant agronomic indices and soil physicochemical
properties, and effects of soil acidification on the soil microbiome. a Significant
Spearman’s correlation coefficients were noted by asterisks. P values were adjusted
by Benjamini–Hochberg false discovery correction (*P <0.05, **P <0.01, ***P <0.001;
n= 180). MC, soil moisture content; SOC, soil organic carbon; DOC, soil dissolved
organic carbon; TN, total nitrogen; NO3

-, nitrate; NH4
+, ammonium; C:N, SOC/(NO3

- +
NH4

+); TP, total phosphorus; AP, available phosphorus; TK, total potassium; AK,
available potassium; CEC, cation exchange capacity. b Stepwise regressionmodel of
disease severity and soil properties. The statistical test used is F-test (F-statistic:
21.24), and P<0.001 denotes the significance of the model and the significance of
the predictor in the model (n = 180). NMDS ordinations of Bray Curtis distances for

the bacterial (c) and fungal (d) communities from soil samples of different pH
(n= 60). RangesofpHare representedbydifferent shapes inpanels (c) and (d). Copy
numbers of the soil bacteria (e) and fungi (f) fromsoil samples of different pH ranges
(n= 60). Shannon diversity index of the bacterial (g) and fungal (h) communities
from soil samples of different pH ranges (n = 60). In thepanels e-h, boxplots indicate
median (box center line), 25th, 75th percentiles (box), and 5th and 95th percentiles
(whiskers). Asterisks indicate significant differences as represented by theWilcoxon
rank-sum test (two-sided, *P <0.05, **P<0.01, ***P <0.001), and “ns” means not
significant difference. Numbers in brackets denote the sample size in corresponding
boxplot.

Article https://doi.org/10.1038/s41467-023-40810-z

Nature Communications |         (2023) 14:5090 5



R
el

at
ive

 a
bu

nd
an

ce

Actinobacteria
Acidobacteria
Alphaproteobacteria
Betaproteobacteria
Gammaproteobacteria
Deltaproteobacteria
Firmicutes
Chloroflexi
Gemmatimonadetes
Planctomycetes
Others

Ascomycota
Basidiomycota
Rozellomycota
Others

ph
ylu

m

cla
ss

Class

Alphaproteobacteria

Betaproteobacteria

Deltaproteobacteria
Gammaproteobacteria

Ktedonobacteria
Planctomycetacia

Phylum

Chloroflexi
Proteobacteria

Planctomycetes

Ktedonobacteraceae
JG30-KF-AS9
Xanthobacteraceae
Acetobacteraceae
Sphingomonadaceae
Beijerinckiaceae
Caulobacteraceae
Reyranellaceae
Micropepsaceae
Rhizobiaceae
Devosiaceae
Hyphomicrobiaceae
SC-I-84
Burkholderiaceae
Nitrosomonadaceae
TRA3-20
Rhodanobacteraceae
Xanthomonadaceae
Moraxellaceae
Diplorickettsiaceae
Pseudomonadaceae
Polyangiaceae
Archangiaceae
Myxococcaceae
Isosphaeraceae
Gemmataceae
Gemmatimonadaceae
Ilumatobacteraceae
Acidimicrobiaceae
Iamiaceae

0 2

pHRA

1

0.2 0.7

0.4

0.6

1.0

0.8

0.8

1.0

0.9

0 0

4 765

Ktedonobacteria

Alphaproteobacteria

Betaproteobacteria
Gammaproteobacteria

Deltaproteobacteria
Planctomycetacia

Gemmatimonadetes

Acidimicrobiia

***
**
***

**
***
***
***
***
***
***
***
***
***
***
***

***

***

**
**

***
***
***
***

***
*

***

a

d

b c

4.0-4.5
4.5-5.0

5.0-6.0
6.0-7.0

pH range pH range
4.0-4.5

4.5-5.0
5.0-6.0

6.0-7.0

R
el

at
ive

 a
bu

nd
an

ce

Article https://doi.org/10.1038/s41467-023-40810-z

Nature Communications |         (2023) 14:5090 6



DMSO, DMSP, and dimethyl sulfone. The remaining differential KO
functional categories, such as two-component system
[PATH:ko02020], peptidoglycan biosynthesis [PATH:ko00550], bac-
terial secretion system [PATH:ko03070], and glycerophospholipid
metabolism [PATH:ko00564] were mainly involved in components of
microbial carbohydrate and energymetabolism. These results suggest
that soil acidification may reduce gene expression of bacterial com-
munities involving in fungal pathogen suppression, further supporting
previous results that reveal responses of bacterial community com-
position and reduced pathogen inhibition along the soil acidification
gradient.

We next sought to determine whether the pH-induced shifts in
our soil metagenomics, specifically the reduced expression of sulfur
metabolism genes, were correlated with changes in the metabolism of
specific antifungal substances, and performed untargeted metabo-
lomics on bacterial communities by using gas chromatography–mass
spectrometry (GC-MS) at pH of 4.0–4.5, 4.5–5.0, and 5.0–6.0 (Fig. 1e).
Through comparative analyses across different soils, we identified
many identifiable pH-induced bacterial metabolites (n = 28), including
a variety of alkanes, benzenes and sulfur compounds (Supplementary
Table 12). Interestingly, themost significantly enrichedmetabolite was
dimethyl disulfide (DMDS), 45.0–45.9 folds more abundant in high pH
soils than that of lower pH (Wilcoxon rank-sum test, P < 0.001), again,
further suggesting an important role of bacterial sulfur metabolism in
potential pathogen suppression that correlates with shifts in soil pH.

Discussion
Our study provides solid evidence that soil acidification in arable fields
can have an important impact in promoting plant disease severity
caused by plant pathogens, specifically via the inhibition of soil
microbiome fungal pathogen suppression capabilities. In particular,
soil acidification leads to stronger changes in bacterial communities
than in soil fungi, resulting in a declined capacity of soils to suppress

Fusarium root rot. We further used shotgun metagenomics and
untargeted metabolomics, and showed that a small subset of func-
tional pathways and microbial traits related to sulfur metabolism
decline in acidic soils. Specifically, we found significant down regula-
tion of sulfur compound synthesis genes and decline in a known
antifungal bacterial metabolite, and perhaps most importantly, these
declines inmicrobiome sulfur-associated functions are correlatedwith
plant disease severity. Our results suggest that under soil acidification
of arable fields, synergistic effects of soil physicochemical properties
and microbial structure and function can determine plant health
status.

The role of pH as a key environmental factor influencingmicrobial
communities has been described by studies at the continental and
nationwide scale, and also with paired comparisons in numerous
individual sites24–27, yet how soil pH affects the capacity of the soil
microbiome to regulate plant disease has not been previously eluci-
dated. Apart from the contribution of atmospheric sulfur dioxide and
nitrogen oxides produced by fossil-fuel combustion, intensive man-
agement in exceedingly limited agriculture land area, including
increased application of ammonium fertilizer (rather than organic
fertilizers) and the subsequent removal of base cations by plants,
contributes substantially to soil acidification in China25,28,29. The pro-
cess of soil acidification induces the evolution and re-assembly of soil
bacterial communities15,30–32. For instance, Delgado-Baquerizo et al.33

and Guerra et al.34 at continental scales, and Malik et al.35 and Tripathi
et al.30 spanning local to global scales and short- to long-term suc-
cessional trajectories, indicated assembly of specific soil bacterial
communities via niche-based exclusion in acidic pH environments. By
contrast, variations in other edaphic characteristics (e.g., AP, AK, CEC
and sand content) were poor predictors of bacterial community
organization, suggesting that soil nutritional status has relatively less
impact on top-level assembly of soil bacterial communities. Mean-
while, the declines of soil bacterial richness and diversity exacerbated

Fig. 3 | Responses of bacterial and fungal communities to soil acidification.
Relative abundances of bacterial (a) and fungal (b) communities at the phyla level
from soil samples of different pH ranges. c Phylogenetic tree depicting microbial
taxa with significant responses to soil acidification. d Heatmap of the top-30
abundant bacterial families across soil samples of different pH. Hierarchical

clustering analysis was performed using the neighbor-joining method. The left
gradient color key represents the relative abundance (RA) of bacterial families,
whereas the right gradient color key represents soil pH. Asterisks indicate sig-
nificant correlations (*P <0.05, **P <0.01, ***P <0.001, n = 60) between RA and pH
across samples by Spearman’s method (Blue, positive; red, negative).
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Fig. 4 | Microbial taxonomic responses as bioindicators of disease severity.
aOrdinary least squares (OLS) linear regression between the disease severity index
(DSI) and the relative abundances of bacterial phyla (n = 60). Only significant fitted
lines between DSI and relative abundance of microbial phyla are displayed on the
graphs. The blue fitted lines are regression lines from OLS regression, and the

shaded areas indicate 95%confidence interval of the fit. The statistical test used is F-
test based on two-sided tests, and P <0.05 denotes the overall significance of the
regression model. b Mean predictor importance (increased mean square error, %
MSE) of bacterial and fungal phyla on disease severity index based on random
forest modelling. Asterisk indicates significant random forest importance.
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by soil acidification can cause significant changes in the bacterial
community. Recently, Luan et al.36 mechanistically integrated pH into
the metabolic theory of ecology to predict soil bacterial diversity, and
found that the integrated model reliably and accurately predicted the
patterns of bacterial diversity across soil pH gradients. Acidic condi-
tions can disrupt the energy metabolism of soil bacterial taxa by
reducing their proton gradients, which can impede the survival of

bacterial taxa that havehigh energydemandsor low tolerance to acidic
conditions24,37,38. Soil fungi with nuclei surrounded by nuclear mem-
branes rather than single-celled bacteria, show strong tolerance to
external stress of extracellular pH39,40. The adaptations allow fungi to
withstand the stress imposed by lowpHconditions and enable them to
occupy ecological niches that may be less suitable for many bacterial
groups41,42.
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Comparedwith fungal communities, soil bacteriaplayamorevital
role in mediating the severity of soil-borne disease. On one hand,
higher diversity and richness of soil bacterial communities induced a
stronger suppression on soil-borne pathogens, while the effects of
diversity and richness of soil fungal communities on disease severity
are not obvious43,44. In acidic soils of this study, resident soil bacterial
community with less diversity may struggle to resist invasion of fungal
pathogens, thereby compromising the maintenance of a robust
microbiota homeostasis against soil-borne pathogen infections45,46. On
the other hand, key bacterial groups (e.g., Proteobacteria)which play a
significant role in disease suppression47 were suppressed at low soil pH
levels in our study. This was supported by random forest modelling
revealing that five bacterial phyla have prominent effects on disease
occurrence, yet no effects were identified in fungal taxa. For instance,
Alpha-, Beta-, and Delta-proteobacteria were negatively correlated
with plant disease severity (Fig. 4). The community assembly patterns
of these proteobacterial taxa have been shown to shift with soil
acidity25. It is important to note that these proteobacterial classes may
rely on synergistic interactions to exert their pathogen-suppressive
effects43,48. Our network analysis showed that approximately 90% of
the interactions among Proteobacteria exhibit positive associations
(Supplementary Fig. 11), indicating their mutualistic cooperation in
achieving inhibitory effects against pathogen infections.

Meanwhile, soil acidity is directly related with pathogenicity, as
Fusarium can be more aggressive at low pH49. To further investigate
the causal relationship between soil bacterial communities and soil-
borne disease prevention, we conducted multiple inoculant experi-
ments by extracting soil bacterial inocula and culturing them directly
with the hyphae and spores of the fungal pathogen Fusarium. Our
results confirmed that bacterial communities from acidified soils lost
the capacity to inhibit fungal pathogen growth, resulting in reduced
capacity to suppress pathogen growth and ultimately efficacy. This is
consistent with our sequencing results that showed acidified soils
harbor higher abundances of pathogenic fungi, Fusarium solani
(Supplementary Fig. 13). We then conducted additional experiments
wherein we inoculated soil suspensions into the substrate used to
cultivate peanut seedlings. We found that microbial inocula coming
from more acid soils had a lower capacity to protect plant roots than
those coming fromnear-neutral pH soils. Collectively, soil acidification
may disrupt the capacity of bacteria to suppress pathogen growth and
reproduction, which can result in more severe occurrence of plant
diseases50,51.

We then aimed to understand the mechanisms explaining the
capacity of the soilmicrobiome to protect plants fromdisease across a
range of soil pH.We showed that downregulation of sulfurmetabolism
pathways in acidified soils accompanied the declined microbiome
suppression of fungal pathogen. Genes encoding for sulfite oxidase
(soxA and soxB), and sulfane dehydrogenase (soxC) were significantly
downregulated in acidified soils. This could be associated with the
depletion of bacterial taxa (e.g., keystone taxa Dongia and Hyphomi-
crobium in the Alphaproteobacteria, Supplementary Table 8) that
mediate sulfur cycling, thus indicating that the loss of important bac-
teria can impact sulfur metabolism pathways52,53. Dongia and

Hyphomicrobium, which are depleted in acidic soils, have been
reported to metabolize sulfate or thiosulfate into sulfur
compounds52,54. In our study, we show that soil acidification disrupted
the emission of antifungal substances, and inhibited the synthesis of
sulfur compounds (e.g., DMSO and DMSP), which have been predicted
to decline under soil acidification55. Previous studies have shown that
DMSO has a strong inhibitory effect on pathogenic fungi via direct cell
membrane destruction or by indirectly disorganizing the functioning
of cellular antioxidation systems in pathogenic fungi4,46,51. Potential
triggers of the sulfur signaling pathway in the soil-microbe-plant sys-
tem need to be further elucidated, but we propose that soil acidifica-
tion has strong effects on the organization of soil microbial consortia,
particularly bacteria, which then impacts the functional capacity to
confront pathogens via a reduction of sulfur-associated bacterial
genes and biochemicals that play important roles in fungal pathogen
suppression50,56.

Finally, we posit that it is fundamental to consider the broader
context of crop disease management. Several factors, such as the
absence of crop rotation practices, the use of susceptible cultivars,
the excessive application of pesticides and fertilizers, and the aban-
donment of indigenous seed microbiomes have been identified as
contributors to the greater occurrence of soil-borne diseases in
agricultural ecosystems57,58. Our results revealed that the native soil
microbiome plays an essential role in regulating the defense capacity
of plants against fungal pathogens. Changes in the soil microbiome
associated with acidification linked with agricultural management
can have important consequences for plant disease severity59,60, and
we provided experimental and mechanistic explanations on why this
is the case. Our results further highlight the role of soil-borne
microbial legacies in shaping plant health for food production9. The
complex interactions between plants and soil microbiome are still
being tackled, with important work now highlighting microbial-
driven defense mechanisms against pathogen infections61.
Further investigations considering the influence of the soil micro-
biome and its legacy on pathogen infection are needed to better
understand the future of food production under global environ-
mental change.

Our study revealed themajor contribution of soil acidification to
explain a complex microbiome-mediated system that can control
plant disease severity. Soil acidification had important negative
effects on bacterial abundance and diversity, whereas it induced
minor changes in the soil fungal community. Further inoculant
experimental assays provided evidence of the fundamental role of
bacterial communities in suppressing plant disease severity from
Fusarium in arable soils; a positive disease-suppressive effect which
was reduced when using microbes from acid soils. Ultimately, the
bacterial taxa associated with low pH soils concomitantly have a low
functional capacity to suppress plant pathogens, thus contributing
to more severe plant diseases. Overall, our findings advance our
understanding of the effect of soil acidification on plant health
regulated via changes in soil bacterial communities, and will serve to
guide future soil microbiome manipulations that aim to promote
plant health and sustainable agriculture.

Fig. 5 | Pathogen-suppressive ability of bacterial communities extracted from
soil samples of different pH ranges and their protection against Fusarium root
rot. a, b Experimental set-up and results of response of mycelial growth of
pathogenic fungus Fusarium sp. to soil volatiles. c, d Experimental set-up and
results of response of the pathogenic fungus Fusarium sp. growth to soil bacterium
suspension. e, f Experimental set-up and results of response of spore germination
rate of Fusarium sp. when co-cultured with soil bacterium suspension. The red
arrows in panel e indicate the conidia; the green arrow indicates the chlamydos-
pore; the blue arrow indicates the germ tubes; and the purple arrows indicate the
hyphae. In b, d and f, the blue fitted lines are regression lines from OLS linear
regressionbetween the suppression rate and soil pH (n = 180), and the shadedareas

indicate 95% confidence interval of the fit. The statistical test used is F-test basedon
two-sided tests, and P <0.001 denote the overall significance of the regression
model. The color key represents soil pH. g Experimental set-up and results of
response of the protective efficacy of the inoculated bacterial suspension to
intrusion of Fusarium sp. h Disease severity of peanut root after colonization of
bacterial suspensions obtained from soil of different pH. Boxplots indicatemedian
(box center line), 25th, 75th percentiles (box), and 5th and 95th percentiles (whis-
kers). Asterisks indicate significant differences as represented by theWilcoxon test
(two-sided, *P <0.05, **P <0.01, ***P <0.001), and “ns” means not significant dif-
ference. Numbers in brackets denote the sample size in corresponding boxplot
(n = 45 for each pH category).
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Methods
Study site
A total of sixty crop fields were randomly sampled across south-
east China (Fig. S1) (28.10–28.90°N, 115.00-116.96°E). Soils corre-
spond with quaternary red clays [Udic Ferrosol, FAO (1998)] with
zonal distribution. These soils are characterized by support low
concentrations of organic matters and fertility. Peanut (Arachis
hypogaea L.) is widely planted across these soil regions. Fields
were planted in early April with a homologous peanut cultivar
(Ganhua) and sampled in late July 2018, shortly before sprout of
root disease.

Plant and soil surveys
For our field survey, three quadrats (replicates, 2m × 2m) were ran-
domly arranged in each field (about 0.5 ha). We sampled (using a
square frame) paired samples of plants and soils in each quadrat
(60 sites x 3 quadrats;n = 180). In detail, 50plants of eachquadratwere
randomly excavated, and 9,000 plants (60 fields x 3 quadrats x 50
plants) were surveyed to determine disease severity. The root rot
symptoms were assessed by scoring as follows: 0, healthy plant with-
out any root rot symptoms (no infection); 1, mild infection with root
rot symptoms (1–25% of the root surface area infected); 2, moderate
infection with root rot symptoms (26–50% of the root surface area
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infected); 3, serious infection with root rot symptoms (51–75% of the
root surface area infected); and 4, severe infection with root rot
symptoms (76–99% of the root surface area infected or a dead plant).
The degree of root rot was expressed as the disease severity index
(DSI), whichwas calculated using the formula DSIð%Þ=P4

i= 1
n× i
N × 4 × 100.

Also, the plant height and root length were determined immediately
in the field (Fig. 1). For soil sampling, 10 soil cores (5-cm diameter and
15-cm depth) in the inter-row of each quadrat after removing and
discarding surfacematerials were collected to pool and homogenize.
This generated three composite samples per field, and 180 soil
samples were kept at 4 °C during transportation. Upon arrival in the
lab, soil samples were sieved through a 2-mmmesh to remove visible
residues (e.g., rocks, roots and organic debris), and subdivided into
three portions. One portion was air-dried and further sieved through
a 0.25-mm sieve for determination of soil physicochemical proper-
ties. Another portion was frozen at −40 °C until DNA extraction for
microbial community, abundance and functional analyses. The last
portion was stored at 4 °C for conducting microcosm experi-
ments (Fig. 1).

Soil physicochemical characteristics
Soil physicochemical properties were determined according to hand-
book of soil analysis62. Soil moisture content (MC) was determined by
using the gravimetricmethod after a 16-hdesiccation at 105 °C. Soil pH
was measured with a glass electrode in a soil-to-water ratio of 1:2.5
(w/v). The content of soil organic carbon (SOC) was determined by
titrating against 0.5M ferrous iron solution after the air-dried soil had
been digested with 0.8M K2Cr2O4 and concentrated H2SO4 (v/v, 1:1) at
150 °C for 30min by the potassium dichromate oxidation method.
Dissolved organic carbon (DOC) was extracted by incubating fresh soil
(equivalent to 10 g dry mass soil) with 50mL of deionized water for
30min, followed by shaking (end-over-end) at 280 rpm for 30min at
25 °C. Then the samples were transferred to a centrifuge tube, and
centrifuged at 450x g for 20min at 4 °C. Subsequently, the super-
natants were filtered through a 0.45-μm cellulose nitrate membrane
before quantifying the DOC content by using a total organic carbon
(TOC) analyzer (Multi N/C 3100, Germany). Total nitrogen (TN) was
measured by the Kjeldahl digestion method. Briefly, the soil sample
washeated andboiledwith concentratedH2SO4. The solutionwas then
absorbed by 2% boric acid solution and titrated against 0.1M sulfuric
acid. Ammonium (NH4

+) andnitrate (NO3
−) were extractedby using 1M

potassium chloride, and then determined by the UV spectro-
photometrymethod. Total phosphorus (TP) and available phosphorus
(AP) were determined by using the molybdenum-blue method with an
atomic absorption spectrophotometer, after the soil had been diges-
ted with concentrated HF-HClO4 (v/v, 2:1) or extracted using 0.5M
sodium bicarbonate, respectively. Total potassium (TK) and available
potassium (AK) were determined by the flame emission spectrometry
method, after the soil had been digested in concentrated HF-HClO4

(v/v, 2:1) or extracted with 1M ammonium acetate, respectively. To
examine the effect of soil buffering capacity on changes in soil acidity,
soil cation exchange capacity (CEC) was also determined through the
1Mammoniumacetatemethodbyusing the air-dried soil samples. Soil
texture mainly included the proportional contents of clay, silt and
gravel in soil, which were determined by the sieve-pipette method.
Overall, 180 soil samples were determined.

SoilDNAextraction, PCRamplification, and Illumina sequencing
After identifying soil pH as a dominant soil factor mediating plant
disease severity, the sampled soils were classified into four categories
based on soil pH (i.e., pH 4.0–4.5, 4.5–5.0, 5.0–6.0, and 6.0–7.0). Soil
samples falling into the corresponding pH category were adopted as
independent replicates to compare the patterns of soil microbial
community among the four pH categories. Consequently, genomic
DNA was extracted from 0.35 g of each soil sample using the FastDNA

SPIN kit for soil (MP Biomedicals, Santa Ana, USA) according to the
manufacturer’s instructions. For microbiome sequencing, the extrac-
ted DNA from three soil samples per field was pooled at the site level,
resulting in 60 composite DNA samples63. Again, this approach was
chosen because these fields have been consistently planted with pea-
nuts for more than five years, leading to homogenization of the soil
properties. The final concentration and quality of DNA were assessed
based on the absorbance ratios at 260/280nm and 260/230 nm by
using NanoDrop 2000 spectrophotometer (Thermo Scientific,
Wilmington, USA).

The V3-V4 regions of bacterial 16 S rRNA genes were amplified by
using the primer pairs 338 F/806 R. The thermocycling conditions
involved 3min at95 °Cand then subjected to 30 cycles of denaturation
at 95 °C for 30 s, annealing at 55 °C for 30 s, followed by 72 °C for 45 s,
and a final extension at 72 °C for 10min. The primer pairs ITS3/ITS4
were used for amplification of the fungal internal transcribed spacer
(ITS) region. The amplification conditions included 3min at 95 °C, and
then 35 cycles of denaturation at 94 °C for 1min, annealing at 51 °C for
1min, followed by 72 °C for 1min and a final extension at 72 °C for
10min. Details regarding the primers can be found in Supplementary
Table 1. For each sample, the primers utilized in the amplification
reactions included unique error-correcting barcodes of variable
length. The amplification reactions were carried out in a total volume
of 20μL, which consisted of 4μL of 5× FastPfu Buffer, 2μL of 2.5mM
dNTPs, 0.8μL of both the forward and reverse primers, 10 ng of tem-
plate DNA, and 0.4μL of FastPfu DNA Polymerase (TransGen Biotech.,
China). To minimize potential biases introduced by individual PCR
reactions, each sample was amplified in triplicate, and the resulting
amplicons were pooled together. All PCRs were performed using the
ABI GeneAmp® 9700 Thermal Cycler (Thermo Fisher Scientific, USA).
The PCR products were assessed on 2.0% agarose gel with ethidium
bromide staining to confirm the correct amplicon length. Subse-
quently, the gel-purification method was employed using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, USA) to obtain purified
amplicons. The purified amplicons were then combined in equimolar
concentrations and subjected to paired-end sequencing (2 × 300bp)
using an Illumina MiSeq PE 250 sequencer (Illumina, USA) at Shanghai
Personal Biotechnology Co., Ltd (Shanghai, China), following standard
protocols.

Determination of soil microbial abundances by quantitative
real-time PCR
Quantitative real-time PCR (qPCR) was used for the quantification
of total bacteria and fungi in the soil samples. Briefly, abundances
of bacteria and fungi were quantified using primers Eub338F/
Eub518R and ITS1f/5.8 s, respectively (Supplementary Table 2).
Standard curves were generated by using 10-fold serial dilutions
of a plasmid containing a full-length copy of the 16 S rRNA gene
from Escherichia coli and the 18 S rRNA gene from Saccharomyces
cerevisiae. Assays were carried out on ABI StepOne PlusTM Real-
Time PCR System (ABI, USA) in a 20mL reaction volume con-
taining 10.0mL of SYBR® Premix Ex Taq™ (Takara Bio Inc.,
Kusatsu, Japan), 0.8 mL of each primer (10mM), 0.4 mL of ROX
Reference Dye II (50 ×), 2 mL of template DNA, and 6mL of sterile
water. The qPCR conditions were 30 s at 95 °C, followed by 40
cycles of 95 °C for 5 s and 60 °C for 34 s64. Template DNA in
negative controls was replaced with nuclease-free water (Qiagen,
Valencia, USA). Melting curve and gel electrophoresis were per-
formed to confirm amplification specificity. The approximate
length of the targeted amplicon region was 200 bp and 300 bp for
bacteria and fungi, respectively. Gene copy numbers of the target
group for each reaction were calculated from the standard curves.
Each essay was performed in three replicates, and the results were
expressed as log10 values (target copy number g−1 soil) for further
statistical analysis65.
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Response of the mycelial growth of soil pathogen to micro-
biome in vitro
To assess the growth responses of root rot pathogen to soils of dif-
ferent pH, plate cultivation experiments were performed in sterilized
Petri dishes (9-cm diameter) containing top and bottom growth areas.
Fusarium sp. ACCC 36194, a model root rot pathogen isolated from a
diseasedpeanut root, was used66. Before the cultivation experiments, a
fungal plug (6-mm diameter) was aseptically transferred to potato
dextrose broth (PDB) agar (Supplementary Table 3) and placed in a
biochemical incubator at 28 °C for 4 d in the dark to activate the
growth vigor of the pathogenic fungi. Meantime, soil stored at 4 °C
from each field wasmoistened to 40% of the water-holding capacity at
28 °C for 3 d in the dark to allow for the microbial activity to stabilize.

Homogenized soil (equivalent to 20 g dry mass soil) was spread
evenly at thebottomof the Petri dish at 28 °C for 1 d. The lid of the Petri
dish contained 15mL of half-strength sterile PDA medium, with
50mg L–1 streptomycin added to inhibit the growth of bacteria. The lid
was then inoculated in the center with a sterile PDA plug containing
fungal hyphae and conditioned at 28 °C for 24h. Then, the lid was
inverted and attached to the bottom before placing a piece of a ster-
ilized 0.22-μm microporous membrane on the bottom soil to avoid
contamination onto the top compartment with a tight Parafilm seal,
and the dishes were incubated at 28 °C for 3 d. In this manner, the
tested fungus was exposed (without direct contact) to the volatiles
produced by the soil microorganisms in the bottom compartment.
After the incubation, the elongation of fungal hyphae was determined
and compared with that in control plates (fungi exposed to the
microporous membrane without the soil). Radial growth of Fusarium
sp. was determined by calculating the distance (in cm) from four
equidistant points from the center of the plug to the colony edge. The
soil samples from each quadrat across all surveyed fields were sub-
jected to five technical replicates, and the resulting datawere averaged
for further analysis.

To further assess the responses of fungal pathogen to the soil
bacterial community, a pairwise antagonistic experiment was con-
ducted. Bacterial suspensions were first prepared. Briefly, 5 g (dry
weight equivalent) of soil was placed in 45mL of phosphate buffer
(KH2PO4, 1 g/L, pH = 6.5), and mixed on a rotary shaker at 4 °C and
150 rpm for 1.5 h. The suspension was then sonicated for 1min at
47 kHz, twice, and mixed again for 0.5 h67, before filtering through a
5-μmmembrane to remove a large proportion of fungal propagules68.
Then, 50μL of the suspension was inoculated evenly on a piece of
sterilized cellulose filter (1 cm × 3 cm) placed on a side of NA medium
(Supplementary Table 3). After cultivation in the dark for 72 h, a PDA
plug (6-mm diameter) containing Fusarium sp. fungal hyphae was
placed on the medium, 2 cm away from the inoculated suspensions.
The plate was then sealed with Parafilm and incubated at 28 °C.
Mycelial growth morphology was captured after 72 h by using a ste-
reomicroscope (Leica LED2500, Schweiz). Plates with an equal volume
of sterile deionized water instead of the bacterial suspension were
used as a control. Five technical replicates were conducted for soil
suspensions from each quadrat as well as the control, and the resulting
data were separately averaged for subsequent analysis.

Response of pathogen spore germination to soil microbiome
To determine the response of the germination of Fusarium sp. to soil
bacterial suspension in detail, the spore suspension of root rot
pathogen, Fusarium sp. ACCC 36194, was first prepared66. Briefly, a
fungal agar block was carved from a PDA plate with 7-d old mycelium
and placed in a center of fresh PDA plate. After 3-d incubation at 28 °C
in the dark, 10mLof sterile deionizedwaterwas added. The spores and
mycelium were manually shaken for 30 s, and then the mycelial cov-
ered surface was scraped off with a sterile glass rod. The spores were
then separated from mycelial fragments and agar fragments by filter-
ing themixture through sterile glass wool. The filtrate was centrifuged

at 3000x g for 10min and cell density adjusted to afinal concentration
of 1 × 104 conidia mL–1 in sterile deionized water, and preserved as a
spore suspension at 4 °C until use.

The effect of bacteria community obtained from sampled soils on
spore germinationwas determined as follows. For the experiment, 270
μL of bacterial suspension (prepared as described) and 30 μL of spore
suspension were mixed in a well of a sterile 96-well plate66. In blank
control experiments, an equivalent volume of sterile deionized water
was used instead of the bacterial suspension. After 12-h incubation at
28 °C, spore germination was determined microscopically (Nikon
Eclipse Ci-L, Tokyo, Japan), by counting 10 fields (40 ×magnification)
per well. Once the length of the germ tube was as long as that of the
spore, it was considered germinated. Soil suspensions from each
quadrat, aswell as the control, underwent five technical replicates, and
the resulting data were averaged independently for subsequent
analysis.

Microbiome defense of plant seedling against pathogen
invasion
To better assess the effects of soil bacterial communities from differ-
ent pH on pathogens colonizing in the plant roots, peanut seedling
cultivation experiment inpots under sterile conditionswas established
(Fig. 1c). We chose 12 soil samples collected from the fields that 3 from
pH 4.0–4.5, 3 from pH 4.5–5.0, 3 from pH 5.0–6.0 and 3 from 6.0–7.0,
with the following selection criteria: 1) different pH values; 2) yet
similar other physicochemical properties. In total, 36 bacterial sus-
pensions (12 samples × 3 triplicates) were prepared, and sterile deio-
nized water instead was used as a control.

Seedling cultivation was performed in a setup under sterile
conditions69. Firstly, peanut seeds were surface-disinfected in 75%
ethanol for 10min, followed by three rinses in sterile deionized water,
immersion in 0.1% HgCl2 for 3min and five final washes in sterile deio-
nized water. Then, seeds were aseptically transferred onto moist filter
paper in 180-mm diameter Petri dishes, and held in a biochemical
incubator at 25 °C for 5 d until they pre-germinated. Contaminated
seeds infected with ambient fungi were discarded and not used in the
subsequent procedure. Seedlings of similar size (~ 2 cm height) were
selected and individually planted in 100-mL plastic pots filled with
sterilized vermiculite. Each pot was supplemented with 25mL of sterile
Hoagland’s nutrient solution at a 1/4 strength, ensuring that only one
seedling was cultivated per pot. The used vermiculite was autoclaved
twice at 121 °C for 20minwith 24h in between. Six 100-mLpots for each
bacterial suspension sample were then placed in a 5-L beaker (Fig. 5g),
whichwas coveredwith four layers of sterile gauze to preventmicrobial
contamination, and placed in a growth chamberwith the following day/
night cycle: 16 h 30 ± 2 °C /8 h 25 ± 2 °C and 75% relative humidity. The
Hoagland’s nutrient solution was replenished every 3 days.

On the 8th day, 15mL of bacterial suspensions or sterile deionized
water were added to the 2-cm radial area around the peanut roots at
the intersecting surface of the air and the vermiculite. After incubation
of 1 d, 5mL of the spore suspension of root rot pathogen was added
once per day for the next three days to where bacterial suspensions or
sterile water had been added. The spore suspensions were prepared as
above, with cell density adjusted to a final concentration of 1 × 107

conidia mL−1. The incidence grade of root disease of six seedlings in a
5-Lbeakerwasdetermined to calculate thedisease severity index (DSI),
as themethods described above, after incubation at 28 °C for 30d. The
cultivation was repeated for five times. Overall, 1110 peanut plants ((36
bacterial suspensions + 1 control) × 6 plants × 5 replicates) were col-
lected for determination of disease infection.

Illumina Miseq data processing
Raw sequences of soil samples were split using QIIME pipeline (http://
qiime.org/) and paired-end sequences were merged by using FLASH70.
Briefly, the forward and reverse primer sequences were trimmed after
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the raw reads were assigned to samples according to their unique
barcodes. Paired sequences were then assembled via paired-end reads
through FLASH. Quality trimming was conducted using the following
criteria: (1) Sequence reads were truncated when three consecutive
low-quality bases were encountered, and the resulting sequences were
re-evaluated for their length, and (2) Any reads containing ambiguous
bases were removed from the analysis. Chimeric reads were dis-
tinguished and removed by using VSEARCH (v1.4.0)71. The remaining
sequences underwent an additional screening step usingHMM-FRAME
to detect and remove any sequences with frame shifts. Given that we
aimed to identify broad taxonomic groups of soil microbial commu-
nities across samples of a pH gradient, the sequences retained for each
sample were then clustered and assigned to OTUs at a clustering
threshold of pairwise identity of 97% viaUPARSE pipeline. Finally, each
OTU was taxonomically annotated by SILVA database (v123) for bac-
teria and the UNITE database (v7.1) for fungi72. Alpha diversity values
and Bray-Curtis dissimilarity for beta-diversity analyses were then
calculated for soil bacterial and fungal communities. To ensure fair
comparisons, all samples were rarified to equal sequencing depth and
normalized via proportions prior to these analyses73.

Shotgun metagenomic sequencing and analysis of soil
microbiome
Based on the results of the above amplicon sequencing, 12 soil samples
that 4 frompH4.0–4.5, 4 frompH4.5–5.0 and 4 frompH5.0–6.0, were
selected for shotgun metagenomic sequencing to evaluate the
microbial community function. Toobtain sufficientmetagenomicDNA
(2μg per sample) for all replicates, 4–6 extractions per sample were
conducted using the FastDNA SPIN Kit for soil (MP Biomedicals, Santa
Ana, CA, USA), and were pooled. Metagenomic libraries were then
constructed using a TruSeq™ DNA PCR-free Sample Prep Kit (Illumina,
USA) according to the manufacturer’s instructions. The metagenomic
libraries were sequenced on a HiSeq 2500 sequencer (Illumina, USA),
and 150-bp paired-end reads were generated. Approximately 182 GB
raw reads were generated after Illumina sequencing, with a total of
899,297,440 resulting paired sequence reads for all 12 soil samples
(Supplementary Table 4).

The generated sequence reads were inspected for quality control
through the following softwareprograms: SeqPrep (https://github.com/
jstjohn/SeqPrep) for tripping non-biological bases in reads, such as
primers or barcodes, and Sickle (https://github.com/najoshi/sickle) for
filtration of reads whose length after tripping was no more than 50bp,
and whose average quality score was nomore than 20. Then, 72.0–82.2
million reads per sample were obtained (Supplementary Table 4). The
optimized sequence reads were assembled de novo by SOAPdenovo
(http://soap.genomics.org.cn/, Version 1.06) based on a de Bruijn graph
for obtaining contigs, and a total of 1,280,885 contigs were generated
(Supplementary Table 5). Resulting contigs >200bp in length were
selected to predict open reading frames (ORFs) usingMetaGene (http://
metagene.cb.k.u-tokyo.ac.jp/), and those for which more than 90% of
their length could be aligned to another gene with more than 95%
identity (no gaps allowed) were removed as redundancies excepted for
the longest gene, resulting in a non-redundant gene catalog comprised
of 1,048,576 geneswith an average length of 653.16 bp. The high-quality
reads from each sample were aligned against the gene catalog by
SOAPaligner (http://soap.genomics.org.cn/) with the criterion “identity
>95%”. We aligned putative amino acid sequences, which were trans-
lated from the gene catalog, against the proteins/domains in KEGG
databases (Release 79.0) by using BLASTP (BLAST+ 2.12.0, http://blast.
ncbi.nlm.nih.gov/Blast.cgi) (e value ≤ 1e–5). A total of 1,323,289 genes
were hit in the KEGG databases and were assigned to 7234 KEGG
Orthology (KO) functional categories and 453 KEGG pathways (Sup-
plementary Fig. 3). We aligned putative amino acid sequences trans-
lated from the gene catalog against the proteins/domains in the NCBI-
NR database using BLASTP (BLAST+ 2.12.0). Genes were taxonomically

annotated using corresponding taxonomic information from the NR
database. In each sample, the mapped reads of each taxon were coun-
ted as the number of taxon-mapped reads.

Metabolomic analysis of antifungal substances by soil
microbiome
Since our results indicated that microbial volatile compounds emitted
from soils were involved in fungal pathogen suppression, we further
determined the identity of volatile compounds with potential sup-
pression by the bacterial communities using glass Petri-dishes with
‘chimney’ lids, in which steel traps with 150mg Tenax TA and 150mg
Carbopack B (Markes International, Llantrisant, UK) were fixed74. To
test the antifungal effect of microbial volatiles from soils of different
pH, collection of antifungal volatiles was done for microbial commu-
nities from four independent soil samples of pH 4.0–4.5, 4 from pH
4.5–5.0 and 4 from pH 5.0–6.0, respectively. Sterile Petri-dishes with
autoclaved soil served as controls. Volatiles were collected for 24 h
after 7 d of incubation.

Next, the traps were removed, capped, and stored at 4 °C until
analysis using GC-Q-TOF QTOF (model Agilent 7890B GC and the
Agilent 7200A QTOF, Santa Clara, CA, USA). Detailed information on
volatile analysis is given by Hol et al.67. For an overall representation of
volatile profiles of the microbial communities a partial least square-
discriminant analysis (PLS-DA)wasmade based onpeak areaswith 95%
confidence regions75. Identification of metabolites was performed
using NIST-MS Search and accurate mass, retention indices, and
spectra match factor using NIST (National Institute of Standards and
Technology, USA, http://www.nist.gov). The linear retention indexes
(lri) values were compared with those found in the NIST database.
Some identified compounds were also verified by comparing mass
spectra and lri values of pure compounds.

Statistical analysis
Optimized model for disease severity with physicochemical variables
was performedby stepwise regression using forward selection criteria (p
of 0.05 for entering and 0.1 for removal). Nonmetric multidimensional
scaling (NMDS) of Bray-Curtis dissimilarities was performed using the
“vegan” package and “metaMDS” function in R software (v3.6.1). Com-
munity Shannon diversity was determined by the Shannon-Weaver
index, calculated using “vegan” package. Two-sided Wilcoxon rank-sum
testwas performedbetween twogroups if the distribution of dependent
variables did not meet the requirement of normality.

Clustering analysis and heatmap analysis were performed with
relative abundance data square-rooted (sqrt) transformed using
“pheatmap” package. The ordinary least-squares (OLS) regression
model was also performed to assess linear the relationship between
root rot severity and the taxonomic groups, and the “ggplot2” package
was used for data visualization. Further, random forest (RF) modelling
was conducted to quantitatively identify the key drivers of DSI among
bacterial and fungal phyla using the “randomForest” and “rfPermute”
packages.

Based on the results of RF analysis, the significant predictors were
further chosen to perform network analysis. The co-occurrence pat-
terns of the bacterial communities and disease severity were con-
structed based on the Spearman correlation matrix to explore the
interactive patterns between microbial taxa in complex communities
and their effects on disease occurrence. Besides, those bacterial gen-
era (sum of the relative abundance no less than 1% among all samples)
that occurred in more than half of the sample size were constrained
genera filtration to reduce rare genera in the dataset. Then, the
“Hmisc” package in R was used to analyze the preprocessed data. Only
the results with a cut-off at an absolute r value above 0.3 and a P value
below 0.05, after adjustment by Benjamini–Hochberg’s method to
reduce the chances of obtaining false-positive results, were considered
statistically robust between taxa, and retained for further network
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visualization. The modules were defined as clusters of closely inter-
connected nodes (e.g., groups of co-occurring or coevolving
microbes)76. After that, the topological properties of the co-
occurrence network, e.g., the numbers of positive and negative cor-
relations, average path length, graph density, network diameter,
average clustering coefficient, average degrees, and modularity, were
calculated via the “igraph” package in R. For network modules, the
module eigengene of a module could summarize the closely con-
nected members within a module77. Later on, those genera that
showed statistically significant correlations with disease severity were
kept for further network visualization. Finally, for the overall network,
the top ten taxa among this network with the highest degree, highest
closeness centrality, and lowest betweenness centrality were selected
as the keystone taxa78.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw reads from Illumina sequencing and Shotgun metagenomic
sequencing described in this study, are available at NCBI under the
accession no. PRJNA852869 and PRJNA942228, respectively. Source
data are available in the Figshare database (https://doi.org/10.6084/
m9.figshare.23813400)79. Source data are provided with this paper.

Code availability
Codes for statistical analyses are available in the Figshare database
(https://doi.org/10.6084/m9.figshare.23803443)80.
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